Notation and conventions

This appendix establishes a common notation across the documentation and source code. Each entry lists a mathematical symbol and the Unicode form commonly used in the codebase, along with a common "property name", and a description. The property names may take a verbose "English form" or concise "mathematical form" corresponding to the given Unicode symbol. As properties, mathematical names are usually used mathematical form is invoked for the elements of a NamedTuple. Mathematical symbols are shown with inline math, while the Unicode column shows the exact glyphs used in code.

A few notes about the following table:

  • TC stands for ThermodynamicConstants
  • AM stands for AtmosphereModel
  • RS stands for ReferenceState
  • Note that there are independent concepts of "reference". For example, AnelasticDynamics involves a "reference state", which is an adiabatic, hydrostatic solution to the equations of motion. But there is also an "energy reference temperature" and "reference latent heat", which are thermodynamic constants required to define the internal energy of moist atmospheric constituents.
  • Mapping to AM fields: ρe corresponds to energy_density(model), ρqᵗ to model.moisture_density, and qᵗ to model.specific_moisture.

The following table also uses a few conventions that suffuse the source code and which are internalized by wise developers:

  • constants refers to an instance of ThermodynamicConstants()
  • q refers to an instance of MoistureMassFractions
  • "Reference" quantities use a subscript $r$ (e.g., $p_r$, $\rho_r$).
  • Phase or mixture identifiers ($d$, $v$, $m$) appear as superscripts (e.g., $Rᵈ$, $cᵖᵐ$), matching usage in the codebase (e.g., Rᵈ, cᵖᵐ).
  • Conservative variables are stored in ρᵣ-weighted form in the code (e.g., ρu, ρv, ρw, ρe, ρqᵗ).
math symbolcodeproperty namedescription
$\rho$ρAM.densityDensity, $ρ = pᵣ / Rᵐ T$ for anelastic
$\alpha$αSpecific volume, $α = 1/ρ$
$\boldsymbol{u} = (u,v,w)$u, v, wAM.velocitiesVelocity components in (x, y, z) or (east, north, up)
$\boldsymbol{ρu} = (ρu, ρv, ρw)$ρu, ρv, ρwAM.momentumMomentum components
$ρ e$ρeAM.energy_densityEnergy density
$T$TAM.temperatureTemperature
$p$pAM.pressurePressure
$b$bBuoyancy
$ρ qᵗ$ρqᵗAM.moisture_densityTotal moisture density
$qᵗ$qᵗAM.specific_moistureTotal specific moisture (the sum of vapor, liquid, and ice mass fractions)
$qᵛ$qᵛAM.microphysical_fields.qᵛVapor mass fraction, a.k.a "specific humidity"
$qˡ$AM.microphysical_fields.qˡLiquid mass fraction
$qⁱ$qⁱAM.microphysical_fields.qⁱIce mass fraction
$qᶜˡ$qᶜˡAM.microphysical_fields.qᶜˡCloud liquid mass fraction
$qᶜⁱ$qᶜⁱAM.microphysical_fields.qᶜⁱCloud ice mass fraction
$qʳ$Rain mass fraction
$qˢ$Snow mass fraction
$ρqᵛ$ρqᵛVapor density
$ρqˡ$ρqˡLiquid density
$ρqⁱ$ρqⁱIce density
$ρqᶜˡ$ρqᶜˡCloud liquid density
$ρqᶜⁱ$ρqᶜⁱCloud ice density
$ρqʳ$ρqʳAM.microphysical_fields.ρqʳRain density
$ρqˢ$ρqˢAM.microphysical_fields.ρqˢSnow density
$qᵛ⁺$qᵛ⁺Saturation specific humidity over a surface
$qᵛ⁺ˡ$qᵛ⁺ˡSaturation specific humidity over a planar liquid surface
$qᵛ⁺ⁱ$qᵛ⁺ⁱSaturation specific humidity over a planar ice surface
$pᵛ$pᵛVapor pressure (partial pressure of water vapor), $pᵛ = ρ qᵛ Rᵛ T$
$pᵛ⁺$pᵛ⁺Saturation vapor pressure
$\mathscr{H}$RelativeHumidity(model)Relative humidity, $ℋ = pᵛ / pᵛ⁺$
$\mathscr{S}$𝒮supersaturation(T, ρ, q, c, surf)Supersaturation, $𝒮 = pᵛ / pᵛ⁺ - 1$
$g$gTC.gravitational_accelerationGravitational acceleration
$\mathcal{R}$TC.molar_gas_constantUniversal (molar) gas constant
$Tᵗʳ$TᵗʳTC.triple_point_temperatureTemperature at the vapor-liquid-ice triple point
$pᵗʳ$pᵗʳTC.triple_point_pressurePressure at the vapor-liquid-ice triple point
$mᵈ$mᵈTC.dry_air.molar_massMolar mass of dry air
$mᵛ$mᵛTC.vapor.molar_massMolar mass of vapor
$Rᵈ$Rᵈdry_air_gas_constant(constants)Dry air gas constant ($Rᵈ = \mathcal{R} / mᵈ$)
$Rᵛ$Rᵛvapor_gas_constant(constants)Water vapor gas constant ($Rᵛ = \mathcal{R} / mᵛ$)
$Rᵐ$Rᵐmixture_gas_constant(q, constants)Mixture gas constant, function of $q$
$cᵖᵈ$cᵖᵈTC.dry_air.heat_capacityHeat capacity of dry air at constant pressure
$cᵖᵛ$cᵖᵛTC.vapor.heat_capacityHeat capacity of vapor at constant pressure
$cˡ$TC.liquid.heat_capacityHeat capacity of the liquid phase (incompressible)
$cⁱ$cⁱTC.ice.heat_capacityHeat capacity of the ice phase (incompressible)
$cᵖᵐ$cᵖᵐmixture_heat_capacity(q, constants)Mixture heat capacity at constant pressure
$Tᵣ$TᵣTC.energy_reference_temperatureReference temperature for internal energy relations and latent heat
$\mathcal{L}^l_r$ℒˡᵣTC.liquid.reference_latent_heatLatent heat of condensation at the energy reference temperature
$\mathcal{L}^i_r$ℒⁱᵣTC.ice.reference_latent_heatLatent heat of deposition at the energy reference temperature
$\mathcal{L}^l(T)$ℒˡliquid_latent_heat(T, constants)Temperature-dependent latent heat of condensation
$\mathcal{L}^i(T)$ℒⁱice_latent_heat(T, constants)Temperature-dependent latent heat of deposition
$θ₀$θ₀RS.potential_temperature(Constant) reference potential temperature for the anelastic formulation
$p₀$p₀RS.surface_pressureSurface reference pressure
$p^{st}$pˢᵗRS.standard_pressureStandard pressure for potential temperature (default 10⁵ Pa)
$ρᵣ$ρᵣRS.densityDensity of a dry reference state for the anelastic formulation
$αᵣ$αᵣSpecific volume of a dry reference state, $αᵣ = Rᵈ θ₀ / pᵣ$
$pᵣ$pᵣRS.pressurePressure of a dry adiabatic reference pressure for the anelastic formulation
$\Pi$ΠExner function, $Π = (pᵣ / pˢᵗ)^{Rᵐ / cᵖᵐ}$
$θᵛ$θᵛVirtual potential temperature
$θᵉ$θᵉEquivalent potential temperature
$θˡⁱ$θˡⁱLiquid-ice potential temperature
$θᵇ$θᵇStability-equivalent potential temperature (for moist Brunt-Väisälä)
$θ$θShorthand for liquid-ice potential temperature (used in set!)
$\Delta t$ΔtSimulation.ΔtTime step.
$\boldsymbol{\tau}$τKinematic subgrid/viscous stress tensor (per unit mass)
$\boldsymbol{\mathcal{T}}$𝒯Dynamic stress tensor used in anelastic momentum, $\mathcal{T} = ρᵣ τ$
$\boldsymbol{J}$JDynamic diffusive flux for scalars
$τˣ$τˣSurface momentum flux ($x$-component), N/m²
$τʸ$τʸSurface momentum flux ($y$-component), N/m²
$\mathcal{Q}^T$𝒬ᵀSurface sensible heat flux, $\mathcal{Q}^T = cᵖᵐ Jᵀ$
$\mathcal{Q}^v$𝒬ᵛSurface latent heat flux, $\mathcal{Q}^v = \mathcal{L}^l Jᵛ$
$Jᵀ$JᵀSurface temperature flux, kg K/m²s
$Jᵛ$JᵛSurface moisture flux, kg/m²s
$Cᴰ$CᴰSurface drag coefficient
$Cᵀ$CᵀSurface sensible heat transfer coefficient (Stanton number)
$Cᵛ$CᵛSurface vapor transfer coefficient (Dalton number)
$T_0$T₀Sea surface temperature
$qᵛ₀$qᵛ₀Saturation specific humidity at sea surface
$\mathscr{I}$Radiative flux (intensity), W/m²
$F_{\mathscr{I}}$FℐRadiative flux divergence (heating rate), K/s
$τˡʷ$τˡʷAtmosphere optical thickness for longwave
$τˢʷ$τˢʷAtmosphere optical thickness for shortwave